
PARTITION TREE GUIDED PROGRESSIVE RETHINKING NETWORK
FOR IN-LOOP FILTERING OF HEVC

Dezhao Wang, Sifeng Xia, Wenhan Yang, Yueyu Hu, Jiaying Liu∗

Institute of Computer Science and Technology, Peking University, Beijing, China

ABSTRACT

In-Loop filter is a key part in High Efficiency Video Coding
(HEVC) which effectively removes the compression arti-
facts. Recently, many newly proposed methods combine
residual learning and dense connection to construct a deeper
network for better in-loop filtering performance. However,
the long-term dependency between blocks is neglected, and
information usually passes between blocks only after dimen-
sion compression. To address these issues, we propose the
Progressive Rethinking Block (PRB) to deliver long-term
memory between the neighboring blocks and allow informa-
tion to flow without compression, which is similar to human
decision mechanism – usually reviewing the complete past
memorized experiences to decide in the present, not just
based on simple principles summarized before. PRBs fur-
ther establish the Progressive Rethinking Network (PRN). In
addition, we calculate the Multi-scale Mean value of Cod-
ing Units (MM-CU) to generate the side information maps
which guide the training of the network by novelly telling
the network architecture of the entire coding partition tree.
Experimental results show that our proposed partition tree
guided PRN provides 10.1% BD-rate reduction on average
compared to the HEVC baseline.

Index Terms— In-Loop Filter, High Efficiency Video
Coding (HEVC), Video Compression

1. INTRODUCTION

The artifacts of lossy compressed video frames are mainly de-
rived from two aspects. First, quantization erases the high fre-
quency components of the frame which introduces the ringing
artifacts. Second, frames are coded in units known as blocks.
It inevitably results in blocking effects. To alleviate the com-
pression artifacts, in-loop filter tools, i.e. the Deblocking Fil-
ter (DF) [1] and the Sample Adaptive Offset (SAO) [2], are
introduced in video codecs like High Efficiency Video Cod-
ing (HEVC) [3] which effectively improves the coding per-
formance.

∗Corresponding author. This work was supported in part by National
Natural Science Foundation of China under contract No. 61772043, and in
part by Beijing Natural Science Foundation under contract No. L182002 and
No. 4192025.

Recently, deep learning methods [4, 5, 6] have obtained
large performance gain over traditional methods [7, 8, 9] on
multiple image processing tasks. Specifically, many meth-
ods introduce deep Convolutional Neural Networks (CNN) to
remove the compression artifacts and successfully achieved
considerable enhancement results. Dong et al. [10] proposed
an Artifacts Reduction CNN (ARCNN) to eliminate JPEG ar-
tifacts. It gives inspiration to the video artifacts reduction. In
[11], Dai et al. proposed the Variable-Filter-Size Residual-
Learning CNN (VRCNN) to replace DF and SAO in HEVC
as the post-processing component. In [12], Jia et al. first ex-
ploited temporal information as another input and built the
Spatial-Temporal Residue Network (STResNet) as an addi-
tional in-loop filter. However, these networks are commonly
shallow, which limits the performance of the filtering.

With the popularity of residual learning [13] and dense
connection [14] techniques, some works explore to utilize
them to build deeper networks for low-level image processing
tasks. In [15], Zhang et al. used Residual Dense Blocks for
image super-resolution which integrates multi-level features
within a block by a 1×1 convolutional layer and appends a
residual connection between the input and output of a block
which facilitates better gradient back-propogation in training.
Furthermore, the techniques are also adopted for in-loop fil-
tering and further boost the performance. He et al. [16] used
the residual learning technique to build a deeper network for
in-loop filtering. In [17], Wang et al. built a Dense Resid-
ual Convolutional Neural Network (DRN) by stacking Dense
Residual Units (DRU). By building deeper networks with the
help of residual learning and dense connection, better com-
pression artifacts removal results can be achieved. The ex-
isting networks benefit from stacking basic blocks. However,
long-term memory is neglected and information at different
depths of the network exchanges in limited ways, which sig-
nificantly affects the learning performance.

In this paper, we propose a simple but effective approach
to boost the network capacity to handle information flow. A
Progressive Rethinking Network (PRN) is built with skip con-
nections which are progressively added between neighbour-
ing blocks before dimension compression. With the added
skip connections, long-term memory can be additionally de-
livered so that the learning capacity of the network can be fur-
ther improved. Moreover, different from the existing method

2671978-1-5386-6249-6/19/$31.00 ©2019 IEEE ICIP 2019

Unfiltered Frame

C
onv

C
onv

PR
B

PR
B

PR
B

PR
B

SIF Level 1

F1 F2

M1 M2

Fd-1 Fd

Md-1 Md PR
B

PR
BFD-1

MD-1

C
oncat C

onv

C
onv

Output Frame

Codes

FD

SIFE

MM-CU

SIFE
SIF Level k

LFE

Fig. 1. The architecture of the Partition Tree Guided Progressive Rethinking Network. The network takes the unfiltered frame
as the input and it generates the filtered output frame. The feature maps extracted from the side information by SIFE are added
to data flow during the processing.

C
o

n
v

C
o

n
cat

C
o

n
v

C
o

n
v

C
o

n
v

C
o

n
v

Md-1

Fd-1

Md

Fd

Progressive Rethinking Block

C
o

n
v

Fig. 2. The detailed structure of the Progressive Rethinking
Block.

[16] which simply introduces final coding unit (CU) partition
side information to facilitate the network training, we nov-
elly tell the network more detailed coding tree architecture by
generating Multi-scale Mean value of CU (MM-CU) as the
side information so that both local and global coding struc-
ture can be fed into the network. Experimental results have
also identified the effectiveness of our progressive inter-block
connection and MM-CU side information.

The rest of the paper is organized as follows. Sec. 2 intro-
duces the proposed method. The detail of MM-CU side infor-
mation generation and the proposed network with progressive
inter-block connection is presented. Experimental results are
shown in Sec. 3 and concluding remarks are given in Sec. 4.

2. PARTITION TREE GUIDED PROGRESSIVE
RETHINKING NETWORK

We first illustrate our main contributions to construct our pari-
tion tree guided progressive rethinking network. Then, the de-
tails of progressive connection in the Progressive Rethinking
Blocks (PRB) and the generation and fusion process of the
coarse-to-fine MM-CU feature will be explained later in de-
tail. We integrate our network as an additional filter between
DF and SAO. Namely, each frame should firstly pass DF be-

fore fed into our network. The output frame of our network is
processed by SAO afterwards.

2.1. Motivation

Our motivation to construct the proposed network is two-fold:

• Progressive Representative Feature Review. Previ-
ous restoration networks [15] perform progressive fea-
ture refinement. However, when the generated new in-
formation is fused with the past information, the fea-
ture dimension is usually compressed. Some high di-
mensional representative features are lost. In our work,
we construct an additional connection between blocks
to maintain this information, which is denoted by the
orange path shown in Figs. 1 and 2.

• Hierarchical Side Information. The coding process
is performed block by block with the coding tree un-
folding. Thus, the guidance side information should
reflect this property, for a better context modeling, and
enabling the network to perform restoration at different
levels. In this work, we extract MM-CU as side infor-
mation to boost the proposed network for better in-loop
filter, as shown in Fig. 3.

2.2. Progressive Rethinking Network

Overall. Our overall network framework is shown in Fig. 1.
The main branch of the framework is the PRN which first
extracts low-level features by a Low-level Feature Extractor
(LFE) and then stacks sequential PRBs with progressive con-
nections between neighbouring blocks. Apart from feeding
the coded frame into the network, we generate coarse-to-fine
MM-CU as guidance. The feature maps of MM-CU are re-
spectively extracted through Side Information Feature Extrac-
tors (SIFE) and then fused with the main branch after different
PRBs.

Low-level Feature Extractor (LFE). The unfiltered frame x
first is fed into an LFE consisting of two convolutional layers

2672

(a) Partition Tree

(b) Multi-Scale Mean value of CU

Fig. 3. (a) shows a partition tree generated by the codec. We
calculate the mean value of each CU at different levels to form
the side information maps. (b) shows the results of side infor-
mation maps of different scales.

to extract shallow feature F0 which is to be fed into sequential
PRBs. The process is denotes as PLFE(·):

F0 = PLFE(x). (1)

Progressive Rethinking Block (PRB). Beyond previous
work RDB in [15], we further connect the information flow
between different blocks before dimension compression as
Fig. 2 shows. For the k-th PRB, it receives feature maps Fk as
a common input to generate multi-level feature maps Gk. We
name the nonlinear procedure as Hk and then Gk is obtained
by:

Gk = Hk(Fk). (2)

Mk works as a long-term memory which is also generated by
the previous PRB. We concatenate Mk with Gk. After that,
we use two 1×1 convolutional layers to respectively extract
two new feature mapsMk+1 and Fk+1, denoted by PM(·) and
PF(·) as follows,

Mk+1 = PM([Gk,Mk]), (3)

Fk+1 = PF([Gk,Mk]), (4)

where [·] dentoes the concatenation operation. PM and FM
usually take the form of dense network.

Progressive Rethinking Network (PRN). We stack multiple
PRBs to construct our PRN. It should be noted that all PRBs
indeed need two inputs: Mk and Fk. We simply set M0 = F0

as the initial. So, the formula can be written as:

Fk,Mk = PPRB(Fk−1,Mk−1). (5)

where PPRB(·) denotes the working process of PRB. After
generating FD (D is the number of PRBs), we concatenate
all feature maps F0, F1, ..., FD together and use a 1×1 con-
volutional layer, denoted by PCompress(·), to compress them as
follows:

FD+1 = PCompress ([F1, F2, F3..., FD]) . (6)

C
o

n
v

P
R

B

P
R

BFk1 Fk2

Mk1 Mk2

M-CU

C
o

n
v

Side Information

Feature Level k

SIFE Unit

Fig. 4. The detailed structure of the SIFE unit.

We append a global residual, which faciliates better detail
modeling and network training. After two convolutional lay-
ers, the output frame is finally reconstructed.

2.3. MM-CU Generation and Fusion

Apart from the main branch of the network, we additionally
generate the MM-CU side information and add it to the main
branch to guide the network learning. In this paper, we extract
the MM-CU based on the coding partition tree from coarse to
fine.

As HEVC standard proposes, each CU can be recurrently
divided into four smaller CUs. Fig. 3 (a) shows an example
partition tree. Since HEVC codecs encode a frame at CU lev-
els independently with different coding parameters, the par-
tition information contains a lot of extra important side in-
formation which can facilitate removing the coding artifacts.
Different from generating mean value of CU (M-CU) at the
bottom layer of the quadtree [16], we extract M-CU in each
layer. Namely, we calculate the mean value of a CU everytime
a partition happens. Consequently, the side information can
guide the network to remove the coding artifacts at different
scales according to the entire coding partition architecture.

The way we generate M-CU is shown in Fig. 3. As
Fig. 3 (a) shows, HEVC codec parts a frame into multiple
coding tree units (CTU) first. Then the CTUs are divided pro-
gressively in a quadtree manner. We calculate the mean value
of each CU at different levels from coarse to fine to derive the
corresponding side information maps. Blocks framed by the
yellow dotted box are four CTUs and their corresponding M-
CU side information map which is the coarsest ones is shown
in Fig. 3 (b) with a yellow border. Then, everytime the CUs
are parted into four smaller CUs, we recurrently calculate the
mean value of each partitioned CU. If the CU is not parted,
we will keep its side information value the same with that of
the upper level, which means that the side information value
of that CU will be kept unchanged afterwards. We do the pro-
cedure recurrently until the last level. Finally, the multi-scale
M-CU side information maps can be obtained.

With the derived multi-scale side information maps, we
use a shallow CNN as a feature extractor to extract feature
maps from them. As Fig. 4 shows, the architecture of the
extractor is similar to PRN but much shallower. We name the
output feature maps of the k-th M-CU as SFk.

2673

It is intuitive that finer M-CU maps contain more local
details of the coding architecture while coarser ones contain
some global coding structure information. Thus, we fuse
coarser M-CU maps with the main branch in deeper layers so
that global information can further guide the learning of the
network after larger area is perceived in deeper layers.

When it comes to the implementation of fusion, we sim-
ply choose to use element-wise add. We fuse SFk after the
nk th PRB of the PRN by:

Fnk
= Fnk

+ SFk. (7)

It not only brings about considerable performance gains but
also uses relatively fewer additional network parameters.

In this paper, we choose to stack 10 PRBs to establish our
baseline considering the balance of performance and compu-
tation complexity. In each PRB, the multi-level feature map
is generated by 6 convolutional layers with dense connection.

We choose HM 16.15 as implementation whose default
settings provide at most four-layer partition quadtree. So we
can get MM-CU of four levels. We respectively add the fea-
ture maps of MM-CU after the 2-nd, 4-th, 6-th, 8-th PRB of
the PRN baseline.

3. EXPERIMENTAL RESULTS

3.1. Implementation

Training Data. We choose DIV2K [18] to generate our train-
ing data. The dataset provides us 800 2K images. We gener-
ate the coded frames by HM 16.15 and for the consistency,
we truncate the frames before SAO. Every image is randomly
cropped into 64×64 patches and randomly filped both hori-
zontally and vertically for augmentation. We compress the
training data using different QPs so as to train different mod-
els for each corresponding QP.

Training Protocol. Mean Square Error (MSE) is adopted as
the loss function. Let Xi denote the unfiltered frame and Yi
denote the ground truth. Besides the highlighting 1×1 convo-
lutional kernels, the sizes of other convolutional kernels are
all 3×3. We use Θ to represent the network parameters so
that the frame filtered by our proposed method can be denoted
as F (Xi; Θ). Therefore, our training is to find the optimal Θ
to minimize the following loss:

L(Θ) =
1

n

n∑
i=1

||F (Xi; Θ)− Yi||2, (8)

where n is the number of training samples. We use ReLU as
our activation function.

The network is implemented on Pytorch and Adam is used
as the optimizer with β1 = 0.9, β2 = 0.999. The learning
rate is firstly set to 10−4 and turned down adaptively until
convergence. We terminate training at 75 epochs.

Table 1. BD-rate reduction of MM-CU guided PRN over
HM-16.15 baseline

Class Sequence BD-rate(%)

C

RaceHorses -6.0

-9.4
BQMall -9.9

PartyScene -6.2

BasketballDrill -15.5

D

RaceHorses -10.7

-9.7
BQSquare -9.2

BlowingBubbles -7.8

BasketballPass -11.0

E

FourPeople -12.7

-11.5Johnny -11.0

KristenAndSara -10.7

Average -10.1

We train our model on Y channel of the frame. Therefore,
only the performance on Y channel is taken into considera-
tion. We test our model under all-intra (AI) configuration at
four levels (QP=22, 27, 32, 37).

3.2. Comparison with HEVC baseline

Due to time constraints, we test our model on the first sec-
ond of the HEVC benchmark sequences [19] from Class C
to Class E. The rate-distortion performance is measured by
Bjontegaard Distortion-rates (BD-rate) [20]. The experimen-
tal results are shown in Table 1. According to the table,
our proposed method can obtain on average 10.1% and up to
15.5% gain over HEVC baseline. More ablation experimental
results can be found on our website1.

4. CONCLUSION

In this paper, a Progressive Rethinking Network based in-loop
filter with partition tree guided side information is proposed.
Besides utilizing residual learning and dense connection in-
side the block, we further propose a novel Progressive Re-
thinking Block which delivers long-term memory between
neighbouring blocks. The added skip connections fuse the
high-dimensional features before dimension compression in
each basic block, preserving richer representative information
for in-loop filter. In addition, we develop coarse-to-fine MM-
CU deriving from the partition tree which not only contains
boundary details but also tells the structure of the frame. By
fusing the feature maps of MM-CU element-wisely to PRN,
the new in-loop filter provides 10.1% BD-rate reduction on
average and 15.5% at most compared to the HEVC baseline.

1https://huzi96.github.io/PRN.html

2674

5. REFERENCES

[1] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke,
M. Ikeda, K. Andersson, M. Zhou, and G. Van der Auw-
era, “HEVC Deblocking Filter,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no.
12, pp. 1746–1754, 2012.

[2] C. M. Fu, Elena Alshina, Alexander Alshin, Y. W.
Huang, C. Y. Chen, C. Y. Tsai, C. W. Hsu, S. M. Lei,
J. H. Park, and W. J. Han, “Sample Adaptive Offset
in the HEVC standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, no. 12, pp.
1755–1764, 2012.

[3] G. J. Sullivan, J. Ohm, W. Han, and T. Wie-
gand, “Overview of the High Efficiency Video Coding
(HEVC) standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[4] C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image
super-resolution using deep convolutional networks,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 38, no. 2, pp. 295–307, 2016.

[5] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate im-
age super-resolution using very deep convolutional net-
works,” in Proc. IEEE Int’l Conf. Computer Vision and
Pattern Recognition, 2016.

[6] K. Zhang, W. M. Zuo, Y. J. Chen, D. Y. Meng, and
L. Zhang, “Beyond a gaussian denoiser: Residual learn-
ing of deep cnn for image denoising,” IEEE Transac-
tions on Image Processing, vol. 26, no. 7, pp. 3142–
3155, 2017.

[7] M. D. Li, J. Y. Liu, W. H. Yang, X. Y. Sun, and Z. M.
Guo, “Structure-revealing low-light image enhancement
via robust retinex model,” IEEE Transactions on Image
Processing, vol. 27, no. 6, pp. 2828–2841, 2018.

[8] S. Yang, J. Y. Liu, Y. M. Fang, and Z. M. Guo, “Joint-
feature guided depth map super-resolution with face pri-
ors,” IEEE Transactions on Cybernetics, vol. 48, no. 1,
pp. 399–411, 2018.

[9] J. Ren, J. Y. Liu, W. Bai, and Z. M. Guo, “Similarity
modulated block estimation for image interpolation,” in
Proc. IEEE Int’l Conf. Image Processing, 2011.

[10] D. Chao, Y. B. Deng, C. C. Loy, and X. O. Tang, “Com-
pression Artifacts Reduction by a Deep Convolutional
Network,” in IEEE Int’l Conf. on Computer Vision,
2015.

[11] Y. Y. Dai, D. Liu, and F. Wu, “A convolutional neu-
ral network approach for post-processing in HEVC intra

coding,” in Proc. International MultiMedia Modeling
Conf., 2017.

[12] C. M. Jia, S. Q. Wang, X. F. Zhang, S. S. Wang, and
S. W. Ma, “Spatial-temporal residue network based in-
loop filter for video coding,” in Proc. IEEE Visual Com-
munications and Image Processing, 2017.

[13] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep
residual learning for image recognition,” in Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition,
2016.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Wein-
berger, “Densely connected convolutional networks,”
in Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, 2017.

[15] Y. L. Zhang, Y. P. Tian, Y. Kong, B. N. Zhong, and Y. Fu,
“Residual dense network for image super-resolution,”
in Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, 2018.

[16] X. Y. He, Q. Hu, X. Y. Zhang, C. Y. Zhang, W. Y. Lin,
and X. T. Han, “Enhancing HEVC compressed videos
with a partition-masked convolutional neural network,”
in Proc. IEEE Int’l Conf. Image Processing, 2018.

[17] Y. B. Wang, Z. Han, Y. M. Li, Z. Z. Chen, and S. Liu,
“Dense Residual Convolutional Neural Network based
In-Loop Filter for HEVC,” in Proc. IEEE Int’l Conf. Im-
age Processing, 2018.

[18] E. Agustsson and R. Timofte, “Ntire 2017 challenge
on single image super-resolution: Dataset and study,”
in Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition Workshop, 2017.

[19] K. Sharman and K. Suehring, “Common test condi-
tions,” in document JCTVC-Z1100, Joint Collaborative
Team on Video Coding, 2017.

[20] G. Bjontegaard, “Calculation of average PSNR differ-
ences between RD-curves,” in document VCEG-M33,
ITU-T Video Coding Experts Group Meeting, 2001.

2675

